final HttpUrl url; //请求连接
final String method; //请求方法
final Headers headers; //请求头
final @Nullable RequestBody body; //请求体
final Map<Class<?>, Object> tags; //tags
final Dispatcher dispatcher; //调度器主要负责异步请求
final @Nullable Proxy proxy; //代理
final List<Protocol> protocols; //支持的协议 默认支持HTTP1.1 和HTTP2.0
final List<ConnectionSpec> connectionSpecs; //传输层版本和连接协议
final List<Interceptor> interceptors; //拦截器
final List<Interceptor> networkInterceptors;//网络拦截器
final EventListener.Factory eventListenerFactory; //
final ProxySelector proxySelector; //代理选择器
final CookieJar cookieJar;
final @Nullable Cache cache; //缓存
final @Nullable InternalCache internalCache; //内部缓存
final SocketFactory socketFactory; //工厂
final SSLSocketFactory sslSocketFactory; //安全套接层
final CertificateChainCleaner certificateChainCleaner; //验证确认响应书,适用HTTPS 请求连接的主机名
final HostnameVerifier hostnameVerifier;//主机名字确认
final CertificatePinner certificatePinner; //证书链
final Authenticator proxyAuthenticator; //代理身份验证
final Authenticator authenticator; //本地身份验证
final ConnectionPool connectionPool; //链接池 复用连接
final Dns dns; //DNS
final boolean followSslRedirects; //安全套接层重定向
final boolean followRedirects; //本地重定向
final boolean retryOnConnectionFailure; //重试连接失败
final int callTimeout; //默认0
final int connectTimeout; //连接超时时间 默认10s
final int readTimeout; //读取超时时间默认10s
final int writeTimeout; //写入超时时间 默认10s
final int pingInterval;
internal fun enqueue(call: AsyncCall) {
synchronized(this) {
//添加到准备请求的队列中
readyAsyncCalls.add(call)
// Mutate the AsyncCall so that it shares the AtomicInteger of an existing running call to
// the same host.
if (!call.call.forWebSocket) {
//寻找相同主机的Call
val existingCall = findExistingCallWithHost(call.host)
//所有的AsyncCall公用一个对象
if (existingCall != null) call.reuseCallsPerHostFrom(existingCall)
}
}
promoteAndExecute()
}
private fun promoteAndExecute(): Boolean {
this.assertThreadDoesntHoldLock()
val executableCalls = mutableListOf<AsyncCall>()
val isRunning: Boolean
synchronized(this) {
val i = readyAsyncCalls.iterator()
while (i.hasNext()) {
val asyncCall = i.next()
//如果正在运行的Call的数量大于64
if (runningAsyncCalls.size >= this.maxRequests) break // Max capacity.
//如果每个域名的请求数超过5
if (asyncCall.callsPerHost.get() >= this.maxRequestsPerHost) continue // Host max capacity.
//从准备数组中移除
i.remove()
//个数累加
asyncCall.callsPerHost.incrementAndGet()
executableCalls.add(asyncCall)
runningAsyncCalls.add(asyncCall)
}
isRunning = runningCallsCount() > 0
}
//
for (i in 0 until executableCalls.size) {
val asyncCall = executableCalls[i]
asyncCall.executeOn(executorService)
}
return isRunning
}
//返回一个CacheRequest对象
internal val cache = DiskLruCache(
fileSystem = fileSystem,
directory = directory,
appVersion = VERSION,
valueCount = ENTRY_COUNT,
maxSize = maxSize,
taskRunner = TaskRunner.INSTANCE
)
internal fun put(response: Response): CacheRequest? {
val requestMethod = response.request.method //获取请求方法
if (HttpMethod.invalidatesCache(response.request.method)) {
try {
remove(response.request)
} catch (_: IOException) {
// The cache cannot be written.
}
return null
}
//如果不是GET 请求直接返回null
if (requestMethod != "GET") {
// Don't cache non-GET responses. We're technically allowed to cache HEAD requests and some
// POST requests, but the complexity of doing so is high and the benefit is low.
return null
}
//Vary头的值为*的情况
if (response.hasVaryAll()) {
return null
}
val entry = Entry(response) //创建Entry对象
var editor: DiskLruCache.Editor? = null
try {
//先调用key方法生成key
//调用DiskLruCache的edit方法获取Editor
editor = cache.edit(key(response.request.url)) ?: return null
entry.writeTo(editor) //写入本地
return RealCacheRequest(editor)
} catch (_: IOException) {
abortQuietly(editor)
return null
}
}
internal fun get(request: Request): Response? {
val key = key(request.url)
val snapshot: DiskLruCache.Snapshot = try {
cache[key] ?: return null
} catch (_: IOException) {
return null // Give up because the cache cannot be read.
}
val entry: Entry = try {
Entry(snapshot.getSource(ENTRY_METADATA))
} catch (_: IOException) {
snapshot.closeQuietly()
return null
}
val response = entry.response(snapshot)
if (!entry.matches(request, response)) {
response.body?.closeQuietly()
return null
}
return response
}
if (cache != null) {
//有body 并且可以被缓存
if (response.promisesBody() && CacheStrategy.isCacheable(response, networkRequest)) {
// Offer this request to the cache.
val cacheRequest = cache.put(response)
return cacheWritingResponse(cacheRequest, response).also {
if (cacheResponse != null) {
// This will log a conditional cache miss only.
listener.cacheMiss(call)
}
}
}
if (HttpMethod.invalidatesCache(networkRequest.method)) {
try {
cache.remove(networkRequest)
} catch (_: IOException) {
// The cache cannot be written.
}
}
}
fun isCacheable(response: Response, request: Request): Boolean {
// Always go to network for uncacheable response codes (RFC 7231 section 6.1), This
// implementation doesn't support caching partial content.
when (response.code) {
HTTP_OK,
HTTP_NOT_AUTHORITATIVE,
HTTP_NO_CONTENT,
HTTP_MULT_CHOICE,
HTTP_MOVED_PERM,
HTTP_NOT_FOUND,
HTTP_BAD_METHOD,
HTTP_GONE,
HTTP_REQ_TOO_LONG,
HTTP_NOT_IMPLEMENTED,
StatusLine.HTTP_PERM_REDIRECT -> {
// These codes can be cached unless headers forbid it.
}
HTTP_MOVED_TEMP,
StatusLine.HTTP_TEMP_REDIRECT -> {
// These codes can only be cached with the right response headers.
// http://tools.ietf.org/html/rfc7234#section-3
// s-maxage is not checked because OkHttp is a private cache that should ignore s-maxage.
if (response.header("Expires") == null &&
response.cacheControl.maxAgeSeconds == -1 &&
!response.cacheControl.isPublic &&
!response.cacheControl.isPrivate) {
return false
}
}
else -> {
// All other codes cannot be cached.
return false
}
}
// A 'no-store' directive on request or response prevents the response from being cached.
return !response.cacheControl.noStore && !request.cacheControl.noStore
}
object ConnectInterceptor : Interceptor {
@Throws(IOException::class)
override fun intercept(chain: Interceptor.Chain): Response {
val realChain = chain as RealInterceptorChain
//调用RealCall的initExchange初始化Exchange
val exchange = realChain.call.initExchange(chain)
//创建一个新的Chain
val connectedChain = realChain.copy(exchange = exchange)
return connectedChain.proceed(realChain.request)
}
}
/** Finds a new or pooled connection to carry a forthcoming request and response. */
internal fun initExchange(chain: RealInterceptorChain): Exchange {
synchronized(this) {
check(expectMoreExchanges) { "released" }
check(!responseBodyOpen)
check(!requestBodyOpen)
}
//ExchangeFinder
val exchangeFinder = this.exchangeFinder!!
//ExchangeFinder调用find方法获取ExchangeCodec
val codec = exchangeFinder.find(client, chain)
//创建Exchange
val result = Exchange(this, eventListener, exchangeFinder, codec)
this.interceptorScopedExchange = result
this.exchange = result
synchronized(this) {
this.requestBodyOpen = true
this.responseBodyOpen = true
}
if (canceled) throw IOException("Canceled")
return result
}
@Throws(IOException::class)
private fun findHealthyConnection(
connectTimeout: Int,
readTimeout: Int,
writeTimeout: Int,
pingIntervalMillis: Int,
connectionRetryEnabled: Boolean,
doExtensiveHealthChecks: Boolean
): RealConnection {
while (true) {
//调用findConnection方法获取RealConnection
val candidate = findConnection(
connectTimeout = connectTimeout,
readTimeout = readTimeout,
writeTimeout = writeTimeout,
pingIntervalMillis = pingIntervalMillis,
connectionRetryEnabled = connectionRetryEnabled
)
// Confirm that the connection is good.
//判断连接是否健康
if (candidate.isHealthy(doExtensiveHealthChecks)) {
return candidate
}
// If it isn't, take it out of the pool.
candidate.noNewExchanges()
// Make sure we have some routes left to try. One example where we may exhaust all the routes
// would happen if we made a new connection and it immediately is detected as unhealthy.
if (nextRouteToTry != null) continue
val routesLeft = routeSelection?.hasNext() ?: true
if (routesLeft) continue
val routesSelectionLeft = routeSelector?.hasNext() ?: true
if (routesSelectionLeft) continue
throw IOException("exhausted all routes")
}
}
@Throws(IOException::class)
private fun findConnection(
connectTimeout: Int,
readTimeout: Int,
writeTimeout: Int,
pingIntervalMillis: Int,
connectionRetryEnabled: Boolean
): RealConnection {
//如果取消抛异常
if (call.isCanceled()) throw IOException("Canceled")
// Attempt to reuse the connection from the call.
//复用call里面的连接
val callConnection = call.connection // This may be mutated by releaseConnectionNoEvents()!
if (callConnection != null) {
var toClose: Socket? = null
synchronized(callConnection) {
if (callConnection.noNewExchanges || !sameHostAndPort(callConnection.route().address.url)) {
//释放连接
toClose = call.releaseConnectionNoEvents()
}
}
// If the call's connection wasn't released, reuse it. We don't call connectionAcquired() here
// because we already acquired it.
//如果call里面的connection不为空
if (call.connection != null) {
check(toClose == null)
return callConnection
}
// The call's connection was released.
toClose?.closeQuietly()
eventListener.connectionReleased(call, callConnection)
}
// We need a new connection. Give it fresh stats.
refusedStreamCount = 0
connectionShutdownCount = 0
otherFailureCount = 0
// Attempt to get a connection from the pool.
//尝试从连接池中获取一个连接
if (connectionPool.callAcquirePooledConnection(address, call, null, false)) {
val result = call.connection!!
eventListener.connectionAcquired(call, result)
return result
}
// Nothing in the pool. Figure out what route we'll try next.
//没看懂这一块路由相关的逻辑
val routes: List<Route>?
val route: Route
if (nextRouteToTry != null) {
// Use a route from a preceding coalesced connection.
routes = null
route = nextRouteToTry!!
nextRouteToTry = null
} else if (routeSelection != null && routeSelection!!.hasNext()) {
// Use a route from an existing route selection.
routes = null
route = routeSelection!!.next()
} else {
// Compute a new route selection. This is a blocking operation!
var localRouteSelector = routeSelector
if (localRouteSelector == null) {
localRouteSelector = RouteSelector(address, call.client.routeDatabase, call, eventListener)
this.routeSelector = localRouteSelector
}
val localRouteSelection = localRouteSelector.next()
routeSelection = localRouteSelection
routes = localRouteSelection.routes
if (call.isCanceled()) throw IOException("Canceled")
// Now that we have a set of IP addresses, make another attempt at getting a connection from
// the pool. We have a better chance of matching thanks to connection coalescing.
//再次尝试从连接池中获取
if (connectionPool.callAcquirePooledConnection(address, call, routes, false)) {
val result = call.connection!!
eventListener.connectionAcquired(call, result)
return result
}
route = localRouteSelection.next()
}
// Connect. Tell the call about the connecting call so async cancels work.
//创建连接
val newConnection = RealConnection(connectionPool, route)
call.connectionToCancel = newConnection
try {
//建立连接
newConnection.connect(
connectTimeout,
readTimeout,
writeTimeout,
pingIntervalMillis,
connectionRetryEnabled,
call,
eventListener
)
} finally {
call.connectionToCancel = null
}
call.client.routeDatabase.connected(newConnection.route())
// If we raced another call connecting to this host, coalesce the connections. This makes for 3
// different lookups in the connection pool!
if (connectionPool.callAcquirePooledConnection(address, call, routes, true)) {
val result = call.connection!!
nextRouteToTry = route
newConnection.socket().closeQuietly()
eventListener.connectionAcquired(call, result)
return result
}
synchronized(newConnection) {
//存储到连接池中
connectionPool.put(newConnection)
//将connection赋值给call
call.acquireConnectionNoEvents(newConnection)
}
eventListener.connectionAcquired(call, newConnection)
return newConnection
}
class ConnectionPool internal constructor(
internal val delegate: RealConnectionPool
) {
constructor(
maxIdleConnections: Int,
keepAliveDuration: Long,
timeUnit: TimeUnit
) : this(RealConnectionPool(//创建RealConnectionPool
taskRunner = TaskRunner.INSTANCE, //获取TaskRunner
maxIdleConnections = maxIdleConnections,
keepAliveDuration = keepAliveDuration,
timeUnit = timeUnit
))
//最大空闲连接数5 最长空闲时间5分钟
constructor() : this(5, 5, TimeUnit.MINUTES)
/** Returns the number of idle connections in the pool. */
fun idleConnectionCount(): Int = delegate.idleConnectionCount()
/** Returns total number of connections in the pool. */
fun connectionCount(): Int = delegate.connectionCount()
/** Close and remove all idle connections in the pool. */
fun evictAll() {
delegate.evictAll()
}
}
/** This is the last interceptor in the chain. It makes a network call to the server. */
public final class CallServerInterceptor implements Interceptor {
private final boolean forWebSocket;
public CallServerInterceptor(boolean forWebSocket) {
this.forWebSocket = forWebSocket;
}
@Override public Response intercept(Chain chain) throws IOException {
RealInterceptorChain realChain = (RealInterceptorChain) chain;
Exchange exchange = realChain.exchange();
Request request = realChain.request();
long sentRequestMillis = System.currentTimeMillis();
exchange.writeRequestHeaders(request); //写入请求头
boolean responseHeadersStarted = false;
Response.Builder responseBuilder = null;
if (HttpMethod.permitsRequestBody(request.method()) && request.body() != null) {
// If there's a "Expect: 100-continue" header on the request, wait for a "HTTP/1.1 100
// Continue" response before transmitting the request body. If we don't get that, return
// what we did get (such as a 4xx response) without ever transmitting the request body.
if ("100-continue".equalsIgnoreCase(request.header("Expect"))) {
exchange.flushRequest();
responseHeadersStarted = true;
exchange.responseHeadersStart();
responseBuilder = exchange.readResponseHeaders(true);
}
//写入请求体
if (responseBuilder == null) {
if (request.body().isDuplex()) {
// Prepare a duplex body so that the application can send a request body later.
exchange.flushRequest();
BufferedSink bufferedRequestBody = Okio.buffer(
exchange.createRequestBody(request, true));
request.body().writeTo(bufferedRequestBody);
} else {
// Write the request body if the "Expect: 100-continue" expectation was met.
BufferedSink bufferedRequestBody = Okio.buffer(
exchange.createRequestBody(request, false));
request.body().writeTo(bufferedRequestBody);
bufferedRequestBody.close();
}
} else {
exchange.noRequestBody();
if (!exchange.connection().isMultiplexed()) {
// If the "Expect: 100-continue" expectation wasn't met, prevent the HTTP/1 connection
// from being reused. Otherwise we're still obligated to transmit the request body to
// leave the connection in a consistent state.
exchange.noNewExchangesOnConnection();
}
}
} else {
exchange.noRequestBody();
}
if (request.body() == null || !request.body().isDuplex()) {
exchange.finishRequest();
}
if (!responseHeadersStarted) {
exchange.responseHeadersStart();
}
if (responseBuilder == null) {
responseBuilder = exchange.readResponseHeaders(false);
}
Response response = responseBuilder
.request(request)
.handshake(exchange.connection().handshake())
.sentRequestAtMillis(sentRequestMillis)
.receivedResponseAtMillis(System.currentTimeMillis())
.build();
int code = response.code();
if (code == 100) {
// server sent a 100-continue even though we did not request one.
// try again to read the actual response
response = exchange.readResponseHeaders(false)
.request(request)
.handshake(exchange.connection().handshake())
.sentRequestAtMillis(sentRequestMillis)
.receivedResponseAtMillis(System.currentTimeMillis())
.build();
code = response.code();
}
exchange.responseHeadersEnd(response);
if (forWebSocket && code == 101) {
// Connection is upgrading, but we need to ensure interceptors see a non-null response body.
response = response.newBuilder()
.body(Util.EMPTY_RESPONSE)
.build();
} else {
response = response.newBuilder()
.body(exchange.openResponseBody(response))
.build();
}
if ("close".equalsIgnoreCase(response.request().header("Connection"))
|| "close".equalsIgnoreCase(response.header("Connection"))) {
exchange.noNewExchangesOnConnection();
}
if ((code == 204 || code == 205) && response.body().contentLength() > 0) {
throw new ProtocolException(
"HTTP " + code + " had non-zero Content-Length: " + response.body().contentLength());
}
return response;
}
}